

भारतीय प्रौद्योगिकी संस्थान धारवाड Indian Institute of Technology Dharwad

WiFi Sensing of the Environment Samveed Desai Supervised by: B.N Bharath

Introduction to the Problem

Experimental Setup

- Our generation is advancing towards an extensive use of smart devices
- **Smart Watches/Bands are** already an integral part of our body
- These wearables are our virtual doctors and keep track of health metrics including

Heart Rate, Breathing Rate and Sleep Patterns.

Problems surrounding smart watches

- Accurate measurement of health metrics
- **Discomfortness faced by continuously wearing these devices** even during sleep
- Limited battery life, thus requiring daily charge

Idea Health Metrics w/o wearables?! results!

Yes!

We think it is possible to measure the health metrics wirelessly and get accurate

Basic Concept

• Use of high frequency signals, along with the algorithms of signal

 Data was collected and logged from SDR-GNU Radio Interface and processed offline using MATLAB/Python

Results

Breathing Rate and Heart Rate in Normal Conditions

processing to get 2 vitals:

- **Breathing Rate** (approximately accurate)
- Heart Rate(with an error)

Theory Behind Approach

• Transmitter Side: A high frequency (here, 5GHz signal) is sent from the transmitter, which after multiple reflections, including the one from the human, is received

Theoretical vs Practical Calculation of Breathing & Heart Rate

Category	Actual Breathing Rate (breaths/min)	Actual Heart Rate (beats/min)	Breathing Rate - Our Method (breaths/min)	Heart Rate - Our Method (beats/min)
Normal - 1st	25	65	~ 26	~ 53
After Running	29	78	30	60
Normal - 2nd	20	70	~ 19	~ 57
After Running (Controlled Breathing)	24	92	~ 25	~ 82

Conclusions & Future Work

- Receiver Side: Delayed version of signal, with $d_k(t) = \tau_k(t)^* w_c$, with the assumption that $\varphi_k(t) \sim 0$ for all paths 'k' as the phase is very slow varying
- Low Pass Filtering: From our experiments, we found that moving average[averaging over a block and shifting by a window] gives exact results as a FIR/IIR low pass filter (Output- y_f[k])
- Processing: Additional downsampling by selecting every mth sample, thus extracting very low frequency in an easy manner (Output- y_{fd}[k])
- Output: Autocorrelation, $\Psi_{v f} = \Sigma y_{fd}[k]^* y_{fd}[k+n] + Power Spectral$ Density calculation to get frequencies related to breathing/heart rate
- We can conclude that we can measure the breathing rate almost accurately but the heart rate with some error
- Future Work: Accurate measurement of heart rate using better hardware, estimating the sleep pattern using Machine Learning algorithms and performing multi-user health metric calculation

References

- http://witrack.csail.mit.edu/vitalradio/
- https://www.youtube.com/watch?v=QyYl28znEgl
- https://ubicomplab.cs.washington.edu/publications/wibreathe/

This work was done as a part of the B. Tech Project in the Department of Electrical Engineering at IIT Dharwad, Karnataka, India.